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Abstract

Continual learning is of great importance for autonomous agents since it is impos-
sible to provide the artificial intelligent with all the knowledge it need in the real
world. While previous work has proposed a large amount of continual learning
methods, little research has been done on the segmentation task. For autonomous
mobile robots, the di↵erentiation of foreground and background matters a lot for the
safety consideration. Therefore, we aim to solve the continual learning for binary
foreground and background segmentation task.

To mitigate catastrophic forgetting, the biggest problem of continual learning,
we totally implement five continual learning methods including fine-tuning (base-
line), output distillation, feature distillation, EWC and Progress and Compress.
Apart from the naive fine-tuning, the last four methods all adopt techniques to
preserve the old knowledge. The first three add regularization terms on the output
space, feature space and weight space respectively. The last one reuses the old pa-
rameters with a layerwise lateral connection in the model architecture. We evaluate
and compare those methods on NYU and CLA dataset of di↵erent types of scene.
The result demonstrates that continual learning methods can prevent catastrophic
forgetting to a certain degree only when the old scene and new scene are similar.
When two scenes di↵er a lot, the regularization-based methods may not be a good
choice.
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Chapter 1

Introduction

Scene understanding is the process of perceiving and analyzing the relationship
between objects and 3D structure of the scene. It is of great importance for the
autonomous mobile robot nowadays. The robot need to correctly tell the static and
moving objects apart in order to safely move in the unknown environment. The
breakthrough in deep learning field prompts the development of scene understand-
ing, especially in the semantic segmentation tasks. Yet, an important drawback of
most neural networks used for semantic segmentation is that they are trained of-
fline using the already collected dataset. When an autonomous robot pretrained on
such datasets moves in the dynamic environment, the practical 3D scene it encoun-
ters may di↵er a lot from its own knowledge, leading to the wrong segmentation
of the foreground and background, and further, the failure of decision for the next
movement. Therefore, it requires the robot to continually learn knowledge over
time.

The main issue of continual learning is that the model has a tendency for
catastrophic forgetting, that is, when the model keeps updating using the new data,
the old knowledge stored will be gradually overwritten by the new one. Obviously,
this is not what we want. Suppose our robot learns the segmentation task in the
university cafeteria, then it moves to the sports center. It would be great if it
continually learns how to correctly segment the scene of the sports center. And at
the same time, remember how to segment the environment in the cafeteria. So if
goes back to the cafeteria, it can quickly adapt to the environment. However, it
is not easy. The ability to learn new knowledge and to preserve old knowledge are
two key factors of continual learning.

Up to now, great work has been done on continual learning in deep learning
and the proposed approaches either restrict new learning [1, 2, 3, 4, 5], or store a
new set of parameters for each task [6, 7, 8], or require old training data [9, 10, 11].
However, most of them are only evaluated on image classification, object detection
or reinforcement learning tasks. The goal of our project is to build a network that
can continually learn the binary foreground and background segmentation task, the
study on which is limited. Moreover, previous study on the segmentation task only
evaluates on the well-labeled benchmark datasets (e.g., Pascal VOC2012 [12]) which
di↵er a lot from the real industrial environment a robot will see. It is interesting to
see how would the network perform on the real data.

In this work, we implement and compare five continual learning approaches for
the binary segmentation task. A naive approach is to fine-tune the network with the
data of the new scene based on pretrained parameters [13]. Output Distillation and
Feature Distillation can be thought of as two approaches that add regularization on
the output and feature space, which are realized by minimizing the prediction of the
model pretrained on the old scene and prediction of the new model. Elastic Weight
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Chapter 1. Introduction 2

Consolidation (EWC), di↵erent from above two methods, directly regularizes the
parameter updating direction. By computing the fisher information which reflects
the importance of every model parameter, it prevents the parameters that have
great influences on the segmentation of the old scene from big changes. Progress
and Compress, uses two models named knowledge base and active column. The
former is used to store existed knowledge of segmentation and the latter learns
how to segment in the new scene. During the progress stage, we update the active
column with the help of knowledge base. During the compress stage, we distill the
new knowledge from the active column back to the knowledge base. For evaluation,
we set up two experiments. One is from ”kitchen” scene to ”bedroom” scene in
NYU Depth V2 Dataset [14]. Another is from the whole NYU Depth V2 Dataset to
CLA dataset which contains labeled images of real indoor scenes in CLA building.

Our contributions are as follows:

• We systematically summarize five continual learning methods, most of which
have not been test on the semantic segmentation task. This may help people
later who want to investigate on such topics quickly understand the advantage
and disadvantage of existing methods and avoid to spare e↵ort on already
tested unsuccessful approaches.

• We evaluate all five approaches not only on well-labeled benchmark dataset
(NYU Depth V2), but more importantly, on the real dataset collected from the
university building (CLA). The di↵erence between the results on two datasets
indicates a potential space of improvement left for future work.

The report is structured as follows: First, Chapter 2 gives an overview about the
previous work on semantic segmentation and continual lifelong learning. Next, in
Chapter 3, we formulate the binary foreground and background segmentation task,
and introduce the theory and training pipeline of five continual learning method-
ologies in the following order: fine-tuning, output distillation, feature distillation,
EWC, Progress and Compress. After that, in Chapter 4, we show the experiments
and results. Section 4.1 details the experiment setup, including the dataset, archi-
tecture and training process. Section 4.2 provides a complete analysis of two sets of
experiments on di↵erent datasets. The performance of all implemented methods are
compared both quantitatively and qualitatively. Finally, in Chapter 5, we conclude
the work and list potential future work. The code is available. 1

1https://github.com/ethz-asl/background_foreground_segmentation/tree/kaiyue/all_
methods



Chapter 2

Related Work

2.1 Semantic Segmentation

Before the advent of deep learning, semantic segmentation task is usually solved by
classical machine learning classifiers like SVM [15], Random Forest [16] or K-means
Clustering [17]. Since convolution neural networks (CNNs) were first applied to
semantic segmentation research field by Long et al. [18], now we see that state-of-
the-art methods in semantic segmentation are based on CNNs trained with pixel-
wise labeled images. We also see that most of the architectures have encoder-decoder
structures [18, 19, 20, 21, 22]. To solve the problem of information loss, Ronneberger
et al. [21] proposed the U-net architecture, i.e., to use shortcut connections to
propagate information from downsampling layers in the encoder to corresponding
upsampling layers in the decoder. Chen et al. [22] further improved the existing
results with a multiple of techniques such as atrous convolutions, atrous spatial
pyramidal pooling and conditional random fields.

In our work, since we focus on comparing the performance of di↵erent continual
learning methods, in order to do a fair comparison, we only need to keep the basic
encoder-decoder architecture fixed for all methods.

2.2 Continual Lifelong Learning

Continual lifelong learning aims to learn consecutive tasks without catastrophic for-
getting, which, however, is of great challenges. This is because of the tendency of
existing knowledge stored in the learned models to be overwritten by new informa-
tion, which has been shown in [23].

Nowadays, di↵erent neural network approaches for continual learning have been
proposed and we find they can be separated into three types: regularization meth-
ods, dynamic architecture methods, and memory replay methods. The first type
[1, 2, 3, 4, 5] retrains the whole network with some regularization terms to prevent
catastrophic forgetting. The second type retrains part of the network and expand
it if needed [6, 7, 8]. For example, progressive networks [8] retains a group of pre-
trained models, and generates a new model using lateral connections with the old
models whenever a new task comes. The third type [9, 10, 11] uses memory replay
to store the old data, which obviously requires more memory.

Our study mainly focuses on the first type which can be further divided into two
categories based on what to control. One is to directly control the model parameters,
e.g., Elastic Weight Consolidation (EWC) [1] adds constraints on model parameters
to restrict the updating of parameters that are important for old tasks. Another is
to control the layer activation such as outputs or intermediate features. Learning

3



Chapter 2. Related Work 4

without Forgetting (LwF) [2] uses the pseudo label generated by the model trained
on old tasks as well as the true label to train the new model, where the pseudo label
preserves the old knowledge. Similarly, incremental learning [4] uses the ”pseudo”
feature to regularize the learning procedure of the new model. Deep Generative
Replay (GR) [3] learns a generator and a task solver at the same time, and then
uses the learned generator to sample the old data when learning the new task. In
certain fields such as medical imaging, since the generated data lacks pixel-level
details which are important for biomedical diagnosis, this method may lead to poor
performance. Keep and learn method [5] regularizes both the latent feature space
and output space. It preserves the old knowledge by modeling the feature space
and the output space to be mutually informative and restricting the feature in the
modeled space. By minimizing both regularization terms, the paper proves, it is
equal to maximize the mutual information.

Despite the success of di↵erent kinds of methods for continual learning, most
previous works focus on image classification tasks or reinforcement learning tasks.
The network output is either the predicted image class or the agent action, which
is of limited dimension or even to be a scaler. Little research has been done on
the semantic segmentation task, where a pixel-wise labelling should be considered.
Michieli and Zanuttigh [4] first introduced the incremental learning problem for se-
mantic segmentation. They use the knowledge distillation to preserve the old knowl-
edge while updating the new one. Their task is to incrementally learn new class,
belonging to multi-center multi-task learning. While we focus on binary segmen-
tation task, which is multi-center single-task learning, where ”multi-center” means
data used in di↵erent tasks are di↵erent, and ”single-task” means the consecutive
tasks are doing the same thing.



Chapter 3

Problem and Methodology

In this chapter, we will formally formulate our task and introduce all methods
we implemented in the following order: fine-tuning, output distillation, feature
distillation, EWC, Progress and Compress.

3.1 Problem Formulation

As we have mentioned in the last chapter, our task belongs to the multi-center single-
task learning. To be specific, we consider the setting in which (1) the system learns
one task at a time, (2) the consecutive tasks are essentially the same, i.e., binary
foreground and background segmentation, (3) the training data for consecutive tasks
belongs to di↵erent types of scenes, (4) the system has no access to training data
of previous tasks and only the validation data is stored.

The continual learning for binary foreground and background segmentation
task, can be defined as the ability of our model to learn the segmentation on the
new data without large performance decreasing on the old data. More concretely,
we first train the model on the dataset of first scene, then we continually train the
model on the second scene. Our goals are to improve the segmentation accuracy on
the second scene and to prevent the accuracy decreasing a lot on the first scene. The
good performance on the second scene means the model can absorb new knowledge,
while the one on the first scene shows it can avoid catastrophic forgetting. The core
problem is how to keep a good balance of them.

Figure 3.1: Pipeline of Fine-tuning

5



Chapter 3. Problem and Methodology 6

3.2 Fine-tuning

A natural idea to do continual learning is fine-tuning, the pipeline of which is shown
in Figure 3.1. First, we train the model (CNN1) on training data of scene 1, then
we initialize a new model (CNN2) with the pre-trained model (CNN1), and train
on training data of scene 2. The target loss function LB(✓) is the cross entropy loss
generally used for the segmentation task. Finally, we compute the segmentation
accuracy on validation data of scene 1 and scene 2.

3.3 Output Distillation

Figure 3.2 displays the pipeline of output distillation. First, we train the model
(CNN1) on training data of scene 1, same as fine-tuning. When given the training
data of scene 2, we create two models (CNN1 and CNN2) at the same time and
both of them are initialized with the model pre-trained on scene 1. We keep one
model (CNN1) fixed, using it to generate pseudo labels, and update another model
(CNN2) using true labels as well as pseudo labels. So the loss for the output
distillation method is described as,

L(✓) = (1� �)LB(✓) + �Lo(✓) (3.1)

where LB(✓) is the cross entropy loss between the output prediction and its corre-
sponding ground truth, Lo(✓) is the cross entropy loss between the output prediction
and pseudo labels, � is the hyperparameter used to weigh two loss terms.

By adding the extra regularization term with pseudo labels, the old knowledge
is distilled to the new model from the output layer.

Figure 3.2: Pipeline of output distillation

3.4 Feature Distillation

The pipeline of feature distillation is quite similar to that of output distillation.
Instead of distilling the old knowledge from the output layer, now we apply the
knowledge distillation on the intermediate feature space, to be specific, the encoder
output. Correspondingly, the cross entropy loss should be replaced with the L2 loss
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since the intermediate feature don not have the meaning of probability as output
space. So the loss for the feature distillation would become,

L(✓) = (1� �)LB(✓) + �Lf (✓) (3.2)

where LB(✓) is the cross entropy loss between the model output and its correspond-
ing ground truth, Lf (✓) is the L2 loss between the new encoder output and pseudo
features computed by the fixed old encoder, � is still the weighting parameter.

3.5 EWC

The above two methods separately control the output and feature activation. An-
other way is to directly add constraints on weights of the network. That’s EWC
method. This method is normally used in the classification task, but we think the
idea fits into our segmentation task as well. So we extend this method to our task.
The assumption of this method is that the neural network is over-parameterization,
which has been proven in [24, 25] to be true in most situations. So the optimal
weights of network for task A is close to that of task B, as long as these two tasks
are similar. In our case, both tasks are binary segmentation tasks. When the
di↵erence between two types of scenes is small, the assumption holds.

Figure 3.3: Illustration of weight updating direction in the parameter space for
di↵erent training methods

Figure 3.3 illustrates the direction of weight updating in the parameter space for
three di↵erent training methods: fine-tuning (without regularization), L2 (adding
equal constraints on weights), EWC (adding constraints on weights selectively).
The grey area is the weight space with low error for task A and the white area is
for task B. After learning task A, the optimal weights ✓⇤A locate at the center of
the grey area. The blue arrow refers to fine-tuning, we can see the although the
performance on task B increases, the performance on task A decreases a lot. The
green arrow refers to adding equal constraints on every weight, we can see it limits
the learning on task B. The red arrow performs well on both tasks. That’s the
idea of EWC. We want weights that are important for task A to change as little as
possible and only update in other directions. The importance is measured by fisher
information, which is defined as,

Fi = E

"✓
@

@✓i
log f(Y ; ✓)

◆2

| ✓
#

(3.3)

where f(Y ; ✓) is the probability density function (pdf) of model output Y condi-
tioned on the value of model parameters ✓. If one parameter makes great contribu-
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tion to the final prediction, then the partial derivative with respect to it should be
large and this parameter is considered important.

However, the segmentation map output by the model only reflect the pdf of
each pixel. In order to compute the fisher information, we need an extra assumption
that the distribution of all pixels in the model output are independent, so that the
pdf of the whole output is the product of that of all pixels. Adding ”log” notation
on both sides, it turns into the following form,

log f(Y ; ✓) =
X

y2 all pixels

log f(y; ✓) (3.4)

Based on the above discussion, the loss for EWC is,

L(✓) = (1� �)LB(✓) + �
X

i

Fi(✓i � ✓⇤A,i)
2 (3.5)

where ✓⇤A,i is the parameter after training on the first scene. Every time we want
to learn a new task, we need to first store the old parameters and compute the
fisher information for each parameter. Model parameters with higher importance
are restricted more.

3.6 Progress and Compress

Di↵erent from all above regularization methods that estimate a single set of weights
for all tasks, progress and compress method belongs to the dynamic architecture
approaches, that is, the model learns a new set of weights for each new task.

Figure 3.4: Pipeline of progress and compress

Figure 3.4 demonstrates the Progress and Compress learning process, where
the blue blocks are knowledge base (KB) used to store old knowledge whilst the
green blocks are active columns (AC) used to learn new tasks. We first train the
knowledge base on training data of scene 1. Then in the ”progress” stage, we can
train the active column with data of scene 2. There exist some layerwise lateral
connections between the knowledge base and the active column, which are used to
reuse the old knowledge when learning the new task. Finally, in the ”compress”
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stage, again with training data of scene 2, we update the knowledge base with the
guide of active columns.

In order to understand how ”lateral connection” works, we can refer to Eq 3.6
and Figure 3.5,

hAC
i = �(Wih

AC
i�1 + ↵i � Ui�(Vih

KB
i�1)) (3.6)

where hKB
i�1 and hAC

i�1 are activation of previous layer in KB and AC, Wi and Vi

Figure 3.5: scheme of lateral connection, � denotes element-wise multiplication, �
denotes element-wise addition

are 3x3 convolutions, Ui is 1x1 convolution, ↵i is a trainable vector of size equal to
the number of filters in layer i and sampled from a uniform distribution, � denotes
element-wise multiplication, � is the Relu activation.

Therefore, in the ”progress” stage, the computation of activation of current
layer in AC makes use of the activation of previous layer in both AC and KB. With
the support of KB, in theory, the training of AC can be speed up.

In the ”compress” stage, on one hand, new knowledge learned by the active
column is consolidated into the knowledge base. This is done by minimizing the
KL divergence between the prediction of AC and KB. On the other hand, we need
to preserve the old knowledge, so we make use of the same trick we used before,
EWC, to regulate the updating procedure of model parameters in KB. Combining
these two points, the loss for Progress and Compress can be formulated as,

L(✓) = (1� �)E
⇥
KL

�
⇡AC(· | x)k⇡KB(· | x)

�⇤
+ �

X

i

Fi(✓
KB
i � ✓KB⇤

i )2 (3.7)

where ⇡AC(· | x) and ⇡KB(· | x) are predicted pixelwise categorical probabilities of
the active column and knowledge base, ✓KB⇤

i is the parameter of KB after training
on scene 1.

To summarize, in the ”progress” stage, we fix the parameters of KB and use
KB to support the training of AC. In the ”compress” step, we freeze the parameters
of AC and update KB with AC. Finally, the parameters of KB store the knowledge
learned so far.



Chapter 4

Experiments and Results

4.1 Experiment Setup

4.1.1 Dataset

We evaluate all methodologies on NYU Depth V2 Dataset [14] and CLA Dataset
for binary background and foreground segmentation.

NYU Depth V2 Dataset is comprised of video sequences from a variety of indoor
scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect.
There are totally 1449 densely labeled pairs of aligned RGB and depth images, 849
object classes and 27 scene types. Since we are doing the binary foreground and
background segmentation task, we combine the ”ceiling”, ”wall” and ”floor” among
849 classes to be the background and others to be the foreground. Moreover, among
27 scene types, we extracted two scenes with the most number of labeled images,
i.e., ”kitchen” and ”bedroom”, to create two sets of sub-datasets. ”kitchen” dataset
contains 225 labeled images and ”bedroom” has 383 labeled images.

CLA Dataset is composed of 2708 auto-labeled images from the CLA building.
It consists of three labels (0,1,2) where all classes that belong to the background,
e.g. ”floor”, ”wall” and ”roof” are assigned the ’2’ label. Foreground has been
assigned the ’0’ label and the unknowns the ’1’ label.

Figure 4.1: Visualization of NYU Depth V2 and CLA dataset

Table 4.1: Experiment Setting.

Experiment Scene 1 Scene 2

Experiment 1 NYU Depth V2 (kitchen) NYU Depth V2 (bedroom)
Experiment 2 NYU Depth V2 (whole) CLA Dataset

10



11 4.1. Experiment Setup

4.1.2 Experiment Setting

In order to compare di↵erent methodologies, we set up two experiments as listed in
Table 4.1. For experiment 1: scene 1 is the ”kitchen” dataset extracted from the
NYU Depth V2 dataset, and scene 2 is the ”bedroom” dataset same from the NYU.
For experiment 2: scene 1 is the whole NYU dataset, scene 2 is the CLA dataset.
For each dataset, we use 80% for training and 20% for validation.

Figure 4.1 displays the visualization result of two datasets we used. Images on
the left belong to the NYU Depth V2 dataset. Among those, the image pair at the
top is drawn from the ”kitchen” dataset while the one at the bottom comes from
the ”bedroom” dataset. We can see that, on one hand, two type of scenes are both
indoor scenes and the labeling is consistent so that continual learning from ”kitchen”
to ”bedroom” is relevant easy. On the other hand, there still exist many di↵erences
between two scenes. For example, in the top image pair, the white cupboard, which
is common in the kitchen, is labeled as the foreground. If the model is only trained
on ”bedroom” scene, it will easily classify it as the background from the appearance.
Based on these two points, experiment 1 is a easy case to study the performance of
all continual learning methods.

From the right images corresponding to the CLA dataset, we see that,

1. The scene in CLA is very di↵erent from that in NYU, whether from the illu-
mination or the category of indoor items, which makes the continual learning
harder.

2. The CLA data itself is very noisy. Since the ground truth label is auto-
generated by neural networks with the information of combined sensors, the
segmentation of background and foreground is very coarse and sometimes may
be mislabeled.

3. The CLA data contains many unknowns, which can be seen from the large
green area. So we need to mask out unknowns when computing the final loss.

4. The class distributions in CLA are highly imbalanced, which can be seen from
the inconsistent ratio of the purple and yellow area.

All these factors make the gap between the NYU and CLA larger, thus the experi-
ment 2 more challenging.

4.1.3 Architecture Details

To do a fair comparison, all methods use the same model architecture except for
the ”lateral connection” part in Progress and Compress. To be specific, all blocks
labeled with ”CNN”, ”KB” or ”AC” in Figure 3.1, Figure 3.2, Figure 3.4 are same.

For the general network architecture, we choose VGG16 [26] as the encoder. It
contains 5 sub blocks, each made of 3x3 convolution layer and max-pooling layer.
As for the decoder, we use the U-net structure [21] with five upsampling blocks,
each has a skip connection with the corresponding sub block in the encoder. Every
upsampling block contains two 3x3 convolution layers, an upsampling layer and a
concatenation layer that connects the encoder feature of the same size. And each
convolution layer is followed by a batch normalization layer and Relu activation.
Finally, for the segmentation head, we use a 3x3 convolution layer with 2 output
channels and the Softmax activation layer to output pixelwise categorical probabil-
ities. In all, the number of output channels for all sub blocks are 64, 128, 256, 512,
512, 256, 128, 64, 32, 16.

As for the special ”lateral connection” part in Progress and Compress method,
taking it as a sub module as depicted in Figure 3.5, we insert this module after
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each pooling layer in the encoder and each Relu activation layer in the decoder.
Therefore, there are 15 lateral connection modules in total.

4.1.4 Training Process

Because the training procedure for two experiments are indeed the same, we will
take experiment 1 for illustration in the following part.

The first step of training are same for all methods, i.e., to train the network
on the ”kitchen” dataset. The encoder is initialized with the weights pretrained on
ImageNet [27] and the whole network is trained using Adam [28] with a learning
rate of 0.0001. We totally train 40 epochs and the model almost converges after 20
epochs.

In the second step, we initialize a new network with the weights pretrained on
”kitchen” dataset. Before continual learning, EWC needs an extra step to store both
the pretrained weights and the computed fisher information for each model weight
in the memory, which are then to be used when calculating the regularization for
weights. For feature distillation and output distillation method, an auxiliary model
is needed to generate the pseudo feature (output of the encoder) and pseudo label
(output of the network). It has the same architecture as our new network and is
also initialized with the pretrained weights. It is fixed, however, in order to keep
the old knowledge. For Progress and Compress, we also build two models of the
same architecture, one called KB, one called AC. KB is initialized with pretrained
weights while AC and the convolution layer in the lateral connection are randomly
initialized. Then during the training, only the weights in AC and lateral connection
are updated with the ones in KB fixed. We use Adam optimizer to train the new
network on ”bedroom” dataset with a learning rate of 0.00001. We totally train 40
epochs for each method.

The training process is complete after above two steps for all methods except
for Progress and Compress, since it only finishes the ”Progress” step. To fulfill the
training, we initialize the KB with weights pretrained on ”kitchen” dataset (step
1) and the AC with weights pretrained on ”bedroom” dataset (step 2). On the
opposite of step 2, this time, we fix AC and update KB using Adam with a learning
rate of 0.00001.

For each method, the hyperparameter � is selected from {0.0001, 0.001, 0.01,
0.1}. As the evaluation metric, we use the accuracy on scene 1 and scene 2. The
former is used to measure the ability to preserve the old knowledge, and the latter
reflects the capability to absorb the new knowledge. In some experiments, we also
use the mean intersection of union (mIoU).

4.2 Results and Analysis

In this section, we aim to answer the following questions:

• How is the capability of continual learning methods to prevent catastrophic
forgetting?

• How is the capability of continual learning methods to learn new tasks?

• Why do methods work, not work, or work similarly?

• Why methods work in one situation while not in another?
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4.2.1 Results of Experiment 1

In experiment 1, we first train the model on the ”kitchen” dataset, then we perform
continual learning on the ”bedroom” dataset. Therefore, the accuracy on ”kitchen”
dataset reflects the capability of learning in the new scene, and the accuracy on
”bedroom” dataset shows the ability to segment the old scene. The higher, the
better.

We list 6 methods in total for comparison: fine-tuning, feature distillation,
output distillation, EWC, fine-tuning + compress, and progress + compress. Five
of them have been detailed explained in Chapter 3. Fine-tuning + compress can
be seen as the simplification of Progress and Compress. It first train a model
(knowledge base) on ”kitchen” dataset, then directly train another model (active
column) using fine-tuning on ”bedroom” dataset, and finally back to use the fine-
tuned model (active column) to update the knowledge base. The only di↵erence is
the second step, where it does not reuse the weights stored in the knowledge base
to train the active column.

Table 4.2: Evaluation of Experiment 1, Architecture:VGG16+Unet

Method
Accuracy on scene 2 Accuracy on scene 1

(bedroom) (kitchen)

Fine-tuning 92.14 88.15
Feature distillation 92.13 88.48
Output distillation 92.08 88.49
EWC 89.9 89.19
Fine-tuning + Compress 89.85 88.81
Progress + Compress 89.87 88.71

A summary of the evaluation of all implemented methods is reported in Table
4.2, the data is the average of three trials and is obtained after training for same
epochs. From the table we can draw the following conclusions:

1. From the rightmost column, we see that the accuracy of last five methods
are all higher than fine-tuning, which shows the e↵ectiveness of knowledge
preservation to some degree. Among all methods, EWC performs the best,
achieving 89.19% segmentation accuracy.

2. From the middle column, we see that the fine-tuning achieves higher accuracy
on scene 2 than other methods. It shows that continual learning methods will
impair new task learning.

3. Combining two columns, we can find a general tendency that when the ac-
curacy on scene 1 increases, that on scene 2 would decrease. There exists a
trade o↵ between the ability to keep knowledge of the old task and the ability
to learn knowledge from the new task.

4. Comparing two columns, we can find the accuracy on scene 2 is always higher
than that on scene 1, which proves the necessity to study continual learn-
ing. There is always a mismatch between the type of scene used to train
the segmentation model and the practical scene it encounters. We also see
that for each method, the di↵erence is not very large. It reflects that the
”kitchen” scene and ”bedroom” scene are close from the appearance and this
is consistent with our common sense.
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5. It is noticeable that completely di↵erent approaches achieve similar results.
There could be two possible explanations: (1) Taking the fine-tuning as the
baseline, its accuracy on scene 2 and scene 1 provides the upper limit (92.14%)
and lower limit (88.15%) respectively. They are very close to each other,
leaving little space for the performance improvement. (2) Remind that the
loss function for each method are in the following form:

Output distillation: L(✓) = (1� �)LB(✓) + �Lo(✓)

Feature distillation: L(✓) = (1� �)LB(✓) + �Lf (✓)

EWC: L(✓) = (1� �)LB(✓) + �
P

Fi

�
✓i � ✓⇤A,i

�2

Progress and Compress: L(✓) = (1� �)E
⇥
KL

�
⇡AC(· | x)k⇡KB(· | x)

�⇤

+�
P

i Fi

�
✓KB
i � ✓KB⇤

i

�2

The first three methods di↵er in their regularization terms, which can be
thought of di↵erent methodologies to preserve old knowledge. For output dis-
tillation, it uses the model pretrained on ”kitchen” to generate the pseudo
segmentation map. This map reflects what the model expect to be classified,
for example, the white cupboard is supposed to be classified as foreground.
So as the model continues training on ”bedroom”, whenever the training data
contains similar white cupboards, the model will have a stronger tendency to
take it as foreground. The regularization term requires the encoder-decoder
architecture to update parameters cleverly. For feature distillation, it mini-
mizes the L2 loss in the intermediate space using the pretrained model. The
idea behind it is that high-level features extracted by the encoder are object-
level, which should be shared across di↵erent datasets. Therefore, the encoder
output should not change too much. The regularization term will force param-
eters of the encoder to update as little as possible. For EWC, as explained
in section 3.5, the regularization will force the weights that are important
for correct segmentation on ”kitchen” scene to change less. For Progress and
Compress, it has the same regularization term as EWC. As for the target loss,
LB(✓) is the cross entropy between the ground truth labels and predictions.
In our case, the ground truth labels are provided as ”logits” (0 for foreground
and 1 for background). KL

�
⇡AC(· | x)k⇡KB(· | x)

�
is the KL divergence be-

tween the predictions of the active column and predictions of the knowledge
base. First of all, cross entropy loss and KL divergence are essentially the
same. Second, if the active column is well-trained in the ”progress” step, the
predictions of the active column can be considered as ”ground truth” labels.
It is in the form of probability distribution rather than ”logits”, thus more
precise for the optimization. Therefore, two target losses have the same idea.
In summary, di↵erent methods, though using apparently variant loss func-
tions, all either directly or indirectly control the updating directions of model
parameters and optimize the performance on both the old and new scene.

6. The performance of Progress and Compress is not as good as expected. Be-
fore looking for possible explanations, we need to understand what the ”lat-
eral connection” module for, in other words, the advantage of reusing the old
knowledge. One thing we already familiar with is that it can avoid catas-
trophic forgetting, in another aspect, it can speed up the positive transfer.
However, in our experiment, we did not see such advantages, which can be
seen from Figure 4.2. Comparing two plots, neither the training speed nor
the final performance gets improved. The problem could derive from the ini-
tialization of ”lateral connection” modules. The introduction of 15 ”lateral
connection” modules brings a large amount of trainable parameters into the
original network. Therefore, even loaded with pretrained weights, the perfor-



15 4.2. Results and Analysis

mance of the new network get decreased a lot when it continues training on
the new scene, which can be seen from the low accuracy at the starting point
in the right plot. As for the lower final performance, the reason could be that
part of the network is fixed, which limits the learning on the new scene.

Figure 4.2: Learning curve on scene 2 (”bedroom”) , left: fine-tuning, right:
progress (lateral connection)

Moreover, for EWC, the best method in experiment 1, we study the influence
of hyperparameter � on its performance. Figure 4.3 displays the learning curves
on scene 2 (”bedroom”) with di↵erent � setting. From left to right, � is gradu-
ally increasing. Based on the loss function displayed in Eq 3.5, increasing � means
strengthening the weight constraints. Comparing the trend of training, validation
and testing curves, we may find when � becomes larger, the testing accuracy de-
creases less whilst both the training and validation accuracy increase more slowly.
In the end, the validation accuracy for all � are almost equal, and the method with
the largest � achieves the highest testing accuracy. The phenomenon reflects that,
on one side, EWC could resilience against catastrophic forgetting, on the other
side, fisher information over-constrain the model parameters, impairing the new
task learning.

Figure 4.3: Learning curves of EWC method on scene 2 (”bedroom”) with di↵erent
� setting, from left to right, � is increasing

4.2.2 Results of Experiment 2

In experiment 2, we first train the model on NYU Depth V2 dataset, then we do
continual learning on CLA dataset.

Similarly, we summarize the evaluation results for all methods in Table 4.3,
from which we can find more discoveries beyond that in experiment 1:

1. From the rightmost column, we see that Output distillation replaces EWC,
becoming the best continual learning method. One possible explanation is
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that the assumption of EWC does not hold anymore. Remember that it
states that the optimal model parameters for two tasks are close to each other
if two tasks are similar. However, in experiment 2, this is not the case. We can
see this from two aspects: (1) From the visualization result as shown in Figure
4.1, NYU and CLA dataset are quite di↵erent. (2) In Figure 4.4, the left and
right plot separately display the pretraining process on scene 1 in experiment
1 and experiment 2. From the left image, we can see that as the training goes,
both the accuracy on scene 1 (”kitchen”) and scene 2 (”bedroom”) increase,
despite a small gap between the orange and red lines due to the di↵erence
of scene type. From the right image, however, we find while the accuracy on
scene 1 (NYU) is increasing, the accuracy on scene 2 (CLA) fluctuates at a
level of 50% (random guessing). Therefore, we can conclude the training of
the first task does not bring any useful information to the second task. The
gap between two tasks are too large.

2. Comparing two columns, we find for fine-tuning, the accuracy on scene 2 and
scene 1 are 98.17% and 77.15%. According to the argument in experiment 1,
there exists a large space for improvement. However, the accuracy on scene
1 for all methods are still similar. One way to understand this is that all
regularization-based methods estimate a single set of parameters for di↵erent
tasks, which only works when tasks are similar. This brings us back to the
discussion in the last point.

Table 4.3: Evaluation of Experiment 2, Architecture:VGG16+Unet

Method
Accuracy on scene 2 Accuracy on scene 1

(CLA) (NYU)

Fine-tuning 98.17 77.15
Feature distillation 98.13 76.35
Output distillation 97.87 77.99
EWC 95.26 77.3
Fine-tuning + Compres 91.39 71.38
Progress + Compress 88.2 76.2

Figure 4.4: Learning curve on scene 1, left: experiment 1, right: experiment 2

4.2.3 Qualitative Comparisons

In Figure 4.5, 4.6, 4.7 and 4.8, we display some sample results of two scenes in two
experiments. In each of them, the top row refers to the real image, the middle row
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is the ground truth segmentation and the bottom row is the segmentation generated
by our models.

Comparing Figure 4.5 with Figure 4.6, we see after continual learning, the
model is able to generate reasonable segmentation on both ”kitchen” and ”bedroom”
scene, though it may sometimes lose some information about the ”kitchen” scene.
For example, in the third column in Figure 4.5, part of the white refrigerator is
predicted as the background.

Figure 4.5: Visualization of segmentation results of ”kitchen” (scene 1 in experiment
1), top row: real image, middle row: ground truth segmentation, bottom row:
segmentation generated by EWC. White: background, Black: foreground.

Figure 4.6: Visualization of segmentation results of ”bedroom” (scene 2 in experi-
ment 1), top row: real image, middle row: ground truth segmentation, bottom row:
segmentation generated by EWC. White: background, Black: foreground.

Comparing Figure 4.7 with Figure 4.8, we will find the model has the tendency
to predict the uncertainty as background. For illustration, see the second and third
columns in Figure 4.7 and all five columns in Figure 4.8, the white color covers more
area in the segmentation generated by our model than that in the ground truth.
This may due to the imbalanced training data of CLA, where the number of pixels
labeled as background is much larger than that labeled as foreground.

Comparing the visualization of experiment 1 with that of experiment 2, we
observe that: (1) The segmentation generated in experiment 2 is quite coarse, while
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that in experiment 1 has relatively clear and smooth object contour. One possible
reason is that the ground truth provided by CLA dataset is itself noisy and not
smooth. For example, the main foreground objects in the first three columns in
Figure 4.8 are truck, human and car, however, we could not clearly tell from the
given ground truth. (2) There exist some di↵erences between the labeling manner
in NYU and CLA. For example, in the first and last columns of Figure 4.6, the
carpet is labeled as the background. However, in the last column of Figure 4.8, the
carpet is considered as the foreground. It could because the labels in CLA dataset
is generated using information collected by sensors while flat objects like carpets
are not detected.

Figure 4.7: Visualization of segmentation results of NYU (scene 1 in experiment 2),
top row: real image, middle row: ground truth segmentation, bottom row: segmen-
tation generated by output distillation. White: background, Black: foreground.

Figure 4.8: Visualization of segmentation results of CLA (scene 2 in experiment 2),
top row: real image, middle row: ground truth segmentation, bottom row: segmen-
tation generated by output distillation. White: background, Black: foreground.

4.2.4 Influence of Backbone

In the above discussion, all methods are based on the model architecture which
uses VGG16 as the backbone and U-net structure as the decoder. In order to show
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it works in the general case, we replace the VGG16 with E�cientNet-B1 [29], and
perform the whole training pipeline as before. E�cientNet-B1 is 7.6x smaller and
5.7x faster on CPU inference than ResNet-152 [30], with similar ImageNet accuracy.

In Table 4.4 and 4.5, we summarize the evaluation results of experiment 1 and
experiment 2. Since Progress and Compress method need requires the customized
model and we did not spare e↵ort on it, there are only 4 methods listed for com-
parison. We can see with the new architecture, in both experiment settings, output
distillation perform the best in terms of accuracy and mIoU. However, a strange
phenomenon is that EWC perform badly, both the metric on scene 1 and scene 2 are
low. Especially in experiment 2, the accuracy on NYU dataset is 45.93% (random
guessing).

Table 4.4: Evaluation of Experiment 1, Architecture:e�cientnetb1+Unet

Method
scene2 (kitchen) scene1 (bedroom)
Acc mloU Acc mloU

Fine tuning 92.45 85.24 89.32 74.77
Feature distillation 92.57 85.45 89.82 75.75
Output distillation 92.66 85.65 89.84 75.89
EWC 85.95 73.44 89.45 75.18

Table 4.5: Evaluation of Experiment 2, Architecture:e�cientnetb1+Unet

Method
scene2 (CLA) scene1 (NYU)
Acc mloU Acc mloU

Fine tuning 97.91 93.76 74.31 56.89
Feature distillation 97.93 93.81 71.01 52.64
Output distillation 97.83 93.53 75.95 58.96
EWC 90.08 79.69 45.93 29.65
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Conclusion

In this work, we study five continual learning approaches for binary foreground and
background segmentation task: fine-tuning, output distillation, feature distillation,
EWC, Progress and Compress. For each approach, we first train the model on scene
1, then we initialize a new model with the pretrained model, and train on scene 2
using the corresponding trick for continual learning. In order to compare di↵erent
methods, we set up two experiment for evaluation. One is from ”kitchen” scene
to ”bedroom” scene in NYU Depth V2 Dataset. Another is from NYU Depth V2
Dataset to CLA dataset. Based on both the visualization of NYU and CLA datasets
and accuracy curves in Figure 4.4, we can easily see that the second experiment is
much more di�cult than the first one. In experiment 1, all continual learning
methods with special techniques perform better than naive fine-tuning on the old
scene, though at the cost of impaired learning on new scene. Among those, EWC
method performs the best. It achieves the accuracy of 89.19% on old scene, 1%
higher than fine-tuning, which is not easy to obtain considering that the accuracy
on the new scene is 92.14%. In experiment 2, only some of continual learning
techniques help to prevent catastrophic forgetting. Methods like feature distillation
is even worse than fine-tuning. It indicates a potential problem of regularization-
based methods, that is, they use a single set of parameters for di↵erent tasks, in
our case, to segment on two apparently greatly di↵erent datasets (NYU and CLA).
However, the representation capability for a model with fixed set of parameters is
limited, which may explain the failure in the second experiment.

For future work, as we have discovered that the use of a single set of parameters
for di↵erent tasks may lead to poor performance, we can try some other continual
learning methods beyond the regularization-based methods. In the related work, we
mentioned the other two types of continual learning methods: dynamic architecture
method and memory replay method, which we have not fully investigated in our
experiment. Memory replay method saves a sample of old training data to reuse
them later. However, based on our analysis, it still uses a single model for all tasks,
hence, cannot get rid of the problem existed in the regularization method. Of course,
it’s worth having a trial to see if such type of method works. Dynamic architecture
method, which selectively trains the network and stores a new set of parameters for
each new task, could be a choice. More recently, we see the success of combination
of meta-learning and continual learning [31, 32]. He et al. [32] state that their
proposed framework can handle a more challenging scenario where di↵erent tasks
may even conflict with each other, which fits into our experiment where the labelling
manner of NYU and CLA are quite di↵erent.
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